ここでは微分法の応用の一つであるロピタルの定理に関して述べる事にします。この定理は0/0及び∞/∞の形の不定形の極限に関する定理です。
ロピタルの定理Ⅰ[編集]
- 関数
が
近傍で微分可能で、
が存在するとする。このとき以下の命題が成り立つ。;

証明
コーシーの平均値の定理
、
に於いて
を代入すれば
、
が成り立ちます。ここで極限
をとれば

となって定理が成立する事が分かります。(証明終)
ロピタルの定理Ⅱ[編集]
次に極限
をとった時に不定形0/0となる場合について考察します。
- 関数
が原点から十分遠い点で微分可能で、
が存在するとする。このとき以下の命題が成り立つ。;
。
証明
まず二つの関数
を考えると
、
が成り立ちます。ここでF(x)、G(x)を微分すれば
、
が成立します。これらの等式より
及び 
が言えますので上述のロピタルの定理ⅠをF(x)、G(x)に適用する事により

が成り立つ事が分かります。(証明終)
ロピタルの定理Ⅲ[編集]
ここでは∞/∞型不定形極限について議論する事にします。
- 関数
が
近傍で微分可能で、
が存在するとする。このとき以下の命題が成り立つ。;
。
証明
とおきます。
を任意にとり、
とします。
このとき、ある
が存在して

が成り立ちます。また、
を
を満たすように(
から見て同じ側に)取ると、コーシーの平均値の定理より
、
を満たす
が存在します。
なので、
が成立します。ここで、

より

ですが、
なので、ある
が存在して

が成り立ちます。よって、
ならば、

です。すなわち、

が成り立つ事が分かります。(証明終)
ロピタルの定理Ⅳ[編集]
上述のⅡとⅢを組み合わせる事により以下の定理が導かれます。
- 関数
が微分可能であり極限
が存在しているとする。このとき以下の命題が成り立つ。;
。
証明
上述のロピタルの定理Ⅱの証明と同様に
とおけば
、 
となるので上記定理Ⅲより以下の等式が成り立つ事が分かります。;
。 (証明終)