Mizar/記号
表示
< Mizar
数学記号 | 意味 | 説明 | [Tex] | [mizar] | 定義ファイル | [Mizar]使用法 | 使用法の意味 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
数学記号 | 意味 | 説明 | [Tex] | [mizar] | 定義ファイル | Mizar使用法[usage] | [usage]使用法意味 | |||||||||
1 | 0 | <Logical notations> | ||||||||||||||
1 | 1 | ¬ | negation | 否定 | 「¬P」は「命題 P が偽」という命題を表す。 | \neg | not | (build in Mizar system) | not P | [not P] | ||||||
1 | 1.1 |  ̄ | negation | 否定 | \bar{P} | not | (build in Mizar system) | not P | [not P] | |||||||
1 | 1.2 | ~ | negation | 否定 | not | (build in Mizar system) | not P | [not P] | ||||||||
1 | 2 | ∧ | & | and (conjunction) | 論理積 | 「A ∧ B」は「命題 A と命題 B がともに真」という命題を表す。 | \wedge | & | (build in Mizar system) | A & B | [A and B] | |||||
1 | 3 | ∨ | or (disjunction) | 論理和 | 「A ∨ B」は「命題 A と命題 B の少なくとも一方は真」という命題を表す。 | \vee | or | (build in Mizar system) | A or B | [A or B] | ||||||
1 | 4 | → | ⇒ | ⊂ | ⊆ | implication | 論理包含、導出 | 「A ⇒ B」は、「命題 A が真なら必ず命題 B も真」という命題を表す。A が偽の場合は A ⇒ B は真であることに注意が必要。 | \Rightarrow | implies | (build in Mizar system) | A implies B | [A implies B] | |||
1 | 4.1 | ⊂ | ⊆ | holds | 論理包含 | 「A⊂B」と「A ⇒ B」,「¬A∨B」は同値である | \subseteqq \subset | holds | (build in Mizar system) | A holds B | [A holds B] | |||||
1 | 5 | ⇔ | equivalence | 同値 | 「A ⇔ B」は A と B の真偽が必ず一致することを意味する。 | \Leftrightarrow | iff | (build in Mizar system) | A iff B | [A is equivalent to B] | ||||||
1 | 6 | ∀ | for all | 全称限量記号 | しばしば ∀ x ∈ S; P(x) のように書かれ、集合 S の任意の元 x に対して命題 P(x) が成立することを表す。 | \forall | for | (build in Mizar system) | 1 | for a holds P | [for every a, P holds.] | |||||
1 | 6.1 | 2 | for a being set holds P | [For every a which is a set, P holds.] | ||||||||||||
1 | 6.2 | 3 | for a, b being set holds P | [For every a, b which are sets, P holds.] | ||||||||||||
1 | 6.3 | 4 | for a being set st P holds Q | [For every set a satisfied with P, Q holds.] | ||||||||||||
1 | 7 | ∃ | there exists | 存在限量記号 | しばしば ∃ x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が少なくとも1つ存在することを表す。 | \exists | ex | (build in Mizar system) | 1 | ex a | [There exists a.] | |||||
1 | 7.1 | 2 | ex a st P | [There exists a such that P holds.] | ||||||||||||
1 | 7.2 | 3 | ex a being set st P | [There exists a set a such that P holds.] | ||||||||||||
1 | 7.3 | ∃1 | ∃! | 一意的に存在 | しばしば ∃1 x ∈ S; P(x) のように書かれ、集合 S の中に命題 P(x) を成立させるような元 x が唯1つ存在することを表す。 | |||||||||||
1 | 8 | T | t | true | TRUE | 1 | truth | not contradiction | (build in Mizar system) | A & not contradiction | [A and TRUE] | |||||
1 | 8.1 | TRUE | (margrel:def 14) | TRUE = 1 | [TRUE is equal to 1.] | |||||||||||
1 | 8.2 | T | \top | TRUE | (margrel:def 14) | TRUE = 1 | [TRUE is equal to 1.] | |||||||||
1 | 9 | F | f | falsum | FALSE | 0 | falsity, falsum | contradiction | (build in Mizar system) | A implies contradiction | [A implies FALSE] | |||||
1 | 9.1 | FALSE | (margrel:def 13) | FALSE = 0 | [FALSE is equal to 0.] | |||||||||||
1 | 9.2 | ⊥ | \bot | FALSE | (margrel:def 13) | FALSE = 0 | [FALSE is equal to 0.] | |||||||||
1 | 10 | ∴ | 結論 | 文頭に記され、その文の主張が前述の内容を受けて述べられていることを示す。 | \therefore | |||||||||||
1 | 11 | ∵ | 理由・根拠 | 文頭に記され、その文の内容が前述の内容の理由説明であることを示す。それゆえ。 | \because | then | A; then B; | |||||||||
1 | 12 | := | :⇔ | 定義 | 「A := X」は、A という記号の意味するところを、X と定義することである。「A :⇔ X」とも書く。 | |||||||||||
1 | 13 | よって、それ故に、故に | then | |||||||||||||
2 | 0 | <The notations of set theory> | ||||||||||||||
2 | 0.1 | P(x)} | S の元のうち、命題 P(x) が真であるもの全てを集めた集合。必要がなければ「∈ S」は省略する。 | |||||||||||||
2 | 1 | ∈ | element (of set) | 集合に属すること | 「x ∈ S」は、x が集合 S の元であることを意味する。必要に応じて「S ∋ x」とも書くが、こちらには S が主語であるようなニュアンスを伴うこともある。 | \in | in | (hidden:pred 1) | a in b | [a is an element of b: a belongs to b.] | ||||||
2 | 1.1 | ∋ | ||||||||||||||
2 | 1.2 | ∈ の否定 | 「¬(x ∈ S)」を「x ? S」と書く。 | \not\in | ||||||||||||
2 | 1.3 | ? | ∋ の否定 | 「¬(S ∋ x)」を「S ? x」と書く。 | \not\ni | |||||||||||
2 | 2 | = | equality (of set) | 集合の一致 | 「S = T」は集合 S と集合 T が等しいことを示す。 | = | = | (hidden:pred 2) | a = b | [a is equal to b.] | ||||||
2 | 3 | ≠ | the negation of equality (of set) | =の否定 | \neq | <> | (hidden:prednot 2) | a <> b | [a is not equal to b.] | |||||||
2 | 4 | { , } | finite set with elements | { , } | (tarski :def 1, etc.) | 1 | {a} | [set with an element a.] | ||||||||
2 | 4.1 | 2 | {a, b} | [set with elements a, b] | ||||||||||||
2 | 5 | ⊆ | relation of inclusion (of set) | 部分集合 | 「S ⊆ T」は S が T の部分集合であることを意味する。必要に応じて「T ⊇ S」とも書く。他も同じ。 | \subseteqq | c= | (tarski:def 3) | a c= b | [a is included in b: b includes a: a is a subset of b.] | ||||||
2 | 5.1 | ⊇ | \supseteqq | |||||||||||||
2 | 5.2 | ? | \varsubsetneqq | |||||||||||||
2 | 5.3 | ? | \varsupsetneqq | |||||||||||||
2 | 6 | ∪ | union (of set) | 和集合 | \bigcup | union | (tarski:def 3) | union a | [the union of a] | |||||||
2 | 7 | ∩ | intersection (of set) | 積集合 | \bigcap | meet | (setfam_1:def 1) | meet a | [the meet of a] | |||||||
2 | 8 | [ , ] | ordered pair | [ , ] | (tarski:def 5) | [a, b] | [the ordered pair of a and b] | |||||||||
2 | 9 | ? | empty set | \emptyset | { } | (xbool_0:def 1) | { } | [{ } has no element.] | ||||||||
2 | 10 | ∪ | union (of two sets) | \cup | \/ | (xbool_0:def 2) | a \/ b | [the union of a and b] | ||||||||
2 | 11 | ∩ | intersection (of two sets) | \cap | /\ | (xbool_0:def 3) | a /\ b | [the intersection of a and b] | ||||||||
2 | 12 | \ | difference (of two sets) | \ | (xbool_0:def 4) | a \ b | [the set { x : x is an element of a and x is not an element of b}] | |||||||||
2 | 13 | ⊂ | relation of proper subset( of set) | 真部分集合 | ⊂ は真部分集合の場合のみを表す。 ただし、⊂ に「等しい場合」を含む流儀もあり、その場合、真部分集合であることを示すには \subsetneq を用いる。 | \subset | c< | (xbool_0:def 8) | a c< b | [a is a proper subset of b] | ||||||
2 | 13.1 | ⊃ | \supset | |||||||||||||
2 | 14 | complement (of set) | 補集合 | (a)^c | ` | (subset_1:def 5) | a ` | [the complement of a] | ||||||||
2 | 14.1 |  ̄ | complement (of set) | 補集合 | \bar{a} | ` | (subset_1:def 5) | a ` | [the complement of a] | |||||||
2 | 15 | × | direct product of (sets) | [:,:] | (zfmisc_1:defs 3) | 1 | [:a, b:] | [the direct product of a and b] | ||||||||
2 | 15.1 | 2 | [:a, b, c:] | [the direct product of a, b and c] | ||||||||||||
2 | 16 | P ( ) | power set (of set) | bool | (zfmisc_1:def 1) | bool a | [the power set of a] | |||||||||
2 | 17 | { x : P } | the set of elements x such that P holds ) | \{ x:P\} | { x : P } | (build in Mizar system) | 1 | { x : P } | [the set of elements x such that P holds] | |||||||
2 | 17.1 | 2 | { x where P : Q} | [the set of element x satisfied with P such that Q holds] | ||||||||||||
3 | 0 | <The notations of the sets of numbers> | ||||||||||||||
3 | 1 | N | the set of natural numbers with 0 | {0,1,2,3,…,∞} | \mathbb{N} | NAT | (numbers:funcnod 1) | 0 in NAT | [0 is an element of N.] | |||||||
3 | 2 | ω | the least set of limit ordinals | {0,1,2,3,…,∞}、NAT:自然数と同じ | \mathbb{\omega} | omega | (ordinal2:def 5) | 0 in omega | [0 is an element of ω.] | |||||||
3 | 3 | Z | the set of integers | {-∞,…,-2,-1,0,1,2,…,∞} | \mathbb{Z} | INT | (numbers:def 4) | NAT c= INT | [N is a subset of Z.] | |||||||
3 | 4 | Q | the set of rational numbers | \mathbb{Q} | RAT | (numbers:def 3) | NAT c= RAT | [N is a subset of Q.] | ||||||||
3 | 5 | R | the set of real numbers | \mathbb{R} | REAL | (numbers:def 1) | RAT c= REAL | [Q is a subset of R.] | ||||||||
3 | 6 | C | the set of complex numbers | \mathbb{C} | COMPLEX | (numbers:def 2) | REAL c= COMPLEX | [R is a subset of C.] | ||||||||
3 | 7 | On | the set of ordinals | \mathbb{On} | On | (ordinal2:def 2) | omega c= On | [ω is a subset of On.] | ||||||||
4 | 0 | <The notations for functions (relations)> | ||||||||||||||
4 | 1 | dom | domain (of function (relation)) | 定義域 | dom | (relat_1:def 4) | dom f | [dom f is the domain of f.] | ||||||||
4 | 2 | im | (rng) range (of function (relation)) | 値域 | rng | (relat_1:def 5) | rng f | [rng f is the range of f.] | ||||||||
4 | 3 | inverse (of relation) | 逆数 | \left( r \right)^{-1} | ~ | (relat_1:def 7) | r ~ | [r ~ is the inverse relation of r.] | ||||||||
4 | 4 | inverse (of function) | 逆関数 | \left( f \right)^{-1} | “ | (relat_1:def 14) | f “ | [f “ is the inverse relation of f.] | ||||||||
4 | 5 | ? | composition (of function (relation)) | 関数どうしの演算 | \circ | * | (relat_1:def 8) | f * g | [f * g is the composition of f and g.] | |||||||
4 | 6 | 1/f | the reciprocal of function f | ^ | (rfunct_1:def 8) | f ^ | [f ^ is the reciprocal of function f , that is, for every x, (f^)(x)=1/(f.x).] | |||||||||
4 | 7 | a・f | af | scalar product of a scalar a and a real function f | a (#) f | (seq_1:def 5) | (a (#) f) .b = a * (f.b) | [ (af)(b) = a(f(b) ) ] | ||||||||
4 | 7.1 | a “ f | (seq_1:def 5) | (a “ f) .b = a * (f.b) | [ (af)(b) = a(f(b) ) ] | |||||||||||
4 | 8 | + | addition of functions | + | + | (seq_1:def 3) | f + g | [f + g is addition of functions, that is , for every x, (f + g)(x) = f(x) +g(x).] | ||||||||
4 | 9 | - | subtraction of functions | - | - | (seq_1:def 4) | f - g | [f - g is subtraction of functions, that is , for every x, (f - g)(x) = f(x) - g(x).] | ||||||||
4 | 10 | ・ | multiplication of functions | \cdot | (#) | (seq_1:def 1) | f (#) g | [f (#)g is product of functions, that is , for every x, (f (#) g )(x) = f(x)・g(x).] | ||||||||
4 | 11 | f/g | fraction of functions | / | (rfunct_1:def 4) | f/g | [f/g is fraction of functions, that is , for every x, (f/g)(x)=(f(x)/g(x)).] | |||||||||
4 | 12 | - | the inverse of function with respect to addition | - | (seq_1:def 7) | - f | [-f is inverse of function with respect to addition, that is , for every x, (-f )(x) = -f(x) .] | |||||||||
4 | 13 | | | restriction (of function (relation)) | \mid | | | (relat_1:def 11) | f|a | a? is the restriction of f with respect to a.] | ||||||||
4 | 14 | f (a) | image of a value a (with respect to function (relation) f ) | f.a | (funct_1:def 4) | f.a | [f.a is the image of a with respect to f.] | |||||||||
4 | 14.1 | image of natural number i of values | \a_i | a.i | (funct_1:def 4) | a.i | ||||||||||
4 | 15 | f (A) | image of set A of values (with respect to function (relation) f ) | f .: A | (relat_1:def 13) | f.:A | [f.:A is the image of set A of values with respect to f.] | |||||||||
4 | 16 | Hom(X, Y) | the set of functions with domain X and range Y | Funcs( , ) | (funct_2:def 2) | f in Funcs(X, Y) implies rng f = Y | [(f is an element of Hom(X, Y)) implies rng f = Y.] | |||||||||
5 | 0 | <The notations of arithmetic> | ||||||||||||||
5 | 1 | + | addition | + | + | (xcmplx_0:def 4) | a + b | [a + b is the sum of a and b.] | ||||||||
5 | 2 | ・ | multiplication | \cdot | * | (xcmplx_0:def 5) | a * b | [a * b is the product of a and b.] | ||||||||
5 | 2.1 | × | multiplication | \times | * | |||||||||||
5 | 3 | - | subtraction | - | - | (xcmplx_0:def 8) | a - b | [a - b is the difference of a and b.] | ||||||||
5 | 4 | - | negative sign (minus sign) | - | - | (xcmplx_0:def 6) | -a | [-a is a negative number.] | ||||||||
5 | 5 | / | fraction | 分数 | \frac{b}{a} | / | (xcmplx_0:def 9) | a / b | [a / b is a fraction with numerator a and denominator b.] | |||||||
5 | 6 | 1/a | the reciprocal (number) of a | 逆数 | 1/a | “ | (xcmplx_0:def 7) | a“ | [a“ is the reciprocal (number) of a, that is 1/a.] | |||||||
5 | 7 | ÷ | division | \div | div | (int_1:def 7) | a div b | [a div b is the quotient when b devides a.] | ||||||||
5 | 8 | mod | residue | mod | (int_1:def 8) | a mod b | [a mod b is the remainder when b devides a.] | |||||||||
5 | 9 | | | devides | \mid | devides | (int_1:def 9) | a|b | b means that a devides b.] | ||||||||
5 | 10 | lcm | the least common multiple (of two natural numbers) | lcm | (nat_1:def 4 | a lcm b | [a lcm b is the least common multiple of a and b.] | |||||||||
5 | 11 | lcm | the least common multiple (of two integers) | lcm’ | (int_2:def 2 | a lcm’ b | a| and |b|.] | |||||||||
5 | 12 | gcd | the greatest common divisor of two natural numbers) | \gcd | hcf | (nat_1:def 5) | a hcf b | [a gcd b is the greatest common divisorof a and b.] | ||||||||
5 | 13 | gcd | the greatest common divisor (of two integers) | \gcd | gcd | (nat_1:def 5) | a gcd b | a| and |b|.] | ||||||||
5 | 14 | ‘ | successor function | succ | (ordinal1:def 1) | succ a | [succ a is the successor of a] | |||||||||
5 | 15 | ≦ | inequality with equality | \leqq | <= | (xreal_0:def 2) | 1 <= 2 | [1 is smaller than 2.] | ||||||||
5 | 16 | > | inequality | > | > | (xreal_0:prednot 4) | 2 > 1 | [2 is larger than 1.] | ||||||||
5 | 17 | ≧ | inequality with equality | \geqq | => | (xreal_0:prednot 2) | 2 => 1 | [2 is larger than 1.] | ||||||||
5 | 18 | < | inequality | < | < | (xreal_0:prednot 2) | 1 < 2 | [1 is smaller than 2.] | ||||||||
5 | 19 | min | minimum | 最小値 | \min | min | (extreal2:def 1) | min(2,3) = 2 | [2 is minimum with respect to 2 and 3.] | |||||||
5 | 20 | max | maximum | 最大値 | \max | max | (extreal2:def 2) | max(2,3) = 3 | [3 is maximum with respect to 2 and 3.] | |||||||
5 | 21 | ! | factorial (of a natural number) | 階乗 | ! | ! | (sin_cos:def 30) | a ! | [a ! is the factorial of a natural number a] | |||||||
5 | 22 | [ ] | Gauss'symbol | [a] | [\ /] | (int_1:def 4) | [\a/] | [[\ a/] is [a].」 | ||||||||
5 | 23 | a≡b(mod c) | a and b are congruent modulo c | \equiv | , are_congruent_mod | (int_1:def 3) | a , b are_congruent_mod c | [(a , b are_congruent_mod c) means (a ≡ b (mod c) )] | ||||||||
6 | 0 | <The notations of numbers and special constants> | ||||||||||||||
6 | 1 | 0 | numeral zero | 0 | 0 | |||||||||||
6 | 2 | 1 | numeral one | 1 | 1 | |||||||||||
6 | 2.1 | 1 | numeral one | 1 | one | (ordinal2:def 2) | ||||||||||
6 | 3 | 2 | numeral two | 2 | 2 | |||||||||||
6 | 4 | 3 | numeral three | 3 | 3 | |||||||||||
6 | 5 | 4 | numeral four | 4 | 4 | |||||||||||
6 | 6 | 5 | numeral five | 5 | 5 | |||||||||||
6 | 7 | 6 | numeral six | 6 | 6 | |||||||||||
6 | 8 | 7 | numeral seven | 7 | 7 | |||||||||||
6 | 9 | 8 | numeral eight | 8 | 8 | |||||||||||
6 | 10 | 9 | numeral nine | 9 | 9 | |||||||||||
6 | 11 | π | circle ratio | \pi | PI | (sin_cos:def 30) | 3 < PI | [πis greater than 3.] | ||||||||
6 | 12 | e | Napier’s number | number_e | (power:def 4) | 2 < number_e | [e is greater than 2.] | |||||||||
6 | 13 | i | imaginary number | (xcmplx_0:def 1) | ||||||||||||
6 | 14 | ∞ | infinity | \infty | +infty | (supinf_1:def 1) | ||||||||||
6 | 14.1 | -∞ | infinity | ?\infty | ?infty | (supinf_1:def 3) | ||||||||||
6 | 15 | +∞ | infinity | +\infty | +infty | (supinf_1:def 1) | ||||||||||
6 | 16 | -∞ | infinity | ?\infty | ?infty | (supinf_1:def 3) | ||||||||||
7 | 0 | <The notations for elementary functions and complex numbers> | ||||||||||||||
7 | 1 | sin | sin | \sin | sin | (sin_cos:def 30) | sin a | [the sine of a.] | ||||||||
7 | 2 | cos | cos | \cos | cos | (sin_cos:def 22) | cos a | [the cosine of a.] | ||||||||
7 | 3 | tan | tan | \tan | tan | (sin_cos4:def 1) | tan a | [the tangent of a.] | ||||||||
7 | 4 | sec | sec | \sec | sec | (sin_cos4:def 4) | sec a | [the second of a.] | ||||||||
7 | 5 | cot | cot | \cot | cot | (sin_cos4:def 2) | cot a | [the cotangent of a.] | ||||||||
7 | 6 | arcsin | arcsin | \arcsin | arcsin | (sin_cos6:def 1) | arcsin a | [the arcsine of a.] | ||||||||
7 | 7 | arccos | arccos | \arccos | arccos | (sin_cos6:def 3) | arccos a | [the arccosine of a.] | ||||||||
7 | 8 | exponential function (of real values) | \exp | exp | (sin_cos:def 26) | exp x | [the exponential function of x] | |||||||||
7 | 9 | Re | the real part of a complex number | Re | (complex1:dfs 1) | Re a | [the real part of a complex number a] | |||||||||
7 | 10 | Im | the imaginary part of a complex number | Im | (complex1:dfs 2) | Im a | [the imaginary part of a complex number a] | |||||||||
7 | 11 | √ | positive square root (of a real number) | \sqrt{} | sqrt | (square_1:def 4) | sqrt a | [the square root of a] | ||||||||
7 | 12 | positive n-powered root (of a real number) | \sqrt[n]{} | n-Root | (prepower:def 3) | 3 -Root a | [the positive cubic root of a] | |||||||||
7 | 13 | squre (of a number) | ^2 | ^2 | (square_1:def 3) | a^2 | [the square of a] | |||||||||
7 | 13.1 | squre (of a number) | ^2 | sqr | (square_1:def 3) | a^2 | [the square of a] | |||||||||
7 | 14 | a real number with exponent of a natural number | a^b | ^ | (newton:def 1) | ^ b | [the b times power of real number a] | |||||||||
7 | 14.1 | a real number with exponent of an integer | a^b | #Z | (prepower:def 4) | a #Z b | [the b times power of real number a] | |||||||||
7 | 14.2 | a real number with exponent of a rational namber | a^b | #Q | (prepower:def 5) | a #Q b | [the b power of real number a] | |||||||||
7 | 14.3 | a real number with exponent of a real number | a^b | #R | (prepower:def 8) | a #R b | [the b power of real number a] | |||||||||
7 | 14.4 | a real number with exponent of a real number | a^b | to_power | (power:def 2) | a to_power b | [the b power of real number a] | |||||||||
7 | 15 | || | absolute value (of a complex number) | \mid a \mid | abs | (complex1:func 18) | abs a | [the absolute value of a] | ||||||||
7 | 16 |  ̄ | conjugate complex number (of complex number) | *’ | (complex1:def 15) | *’ | [*’ = -] | |||||||||
7 | 17 | log | logarithm | \log | log( , ) | (power:def 3) | log(a,b) | [log(a,b) is a logarithm with base of logarithm a and anti-logarithm b.] | ||||||||
7 | 18 | a + bi | a complex number with its real part a and its imaginary part b ), where a and b are real numbers | [*a,b*] | (arytm_0:def 7) | for a being Element of REAL holds [*a,0*] in REAL | [It means that for a∈R,a+0i∈R holds.] | |||||||||
7 | 19 | arg | the argument of a complex number | Arg | (comptrig:def 1) | Arg a | [Arg a is the argument of a complex number a.] | |||||||||
8 | 0 | <The notations for limit and series> | ||||||||||||||
8 | 1 | lim | limit of complex sequence | \lim | lim | (comseq_2:def 5) | 1 | lim a | [the limit of complex sequence a] | |||||||
8 | 1.1 | 2 | lim (a+b) = lim a + lim b | [This holds if a and b are convergent.] | ||||||||||||
8 | 2 | ∑ | pertial sum of a real sequence | \sum | Percial_Sums | (series_1:def 1) | Percial_Sums a | [pertial sum of real sequence a] | ||||||||
8 | 3 | ∑ | sum of infinite series | \sum | Sum | (series_1:def 3) | 1 | Sums a | [sum of infinite series of a real sequence a] | |||||||
8 | 3.1 | 2 | Sums a = lim Percial_Sums a | [The sum of infinite series of a real sequence a is equal to the limit of the pertial sum of it.] | ||||||||||||
8 | 4 | →+∞ | (for a real sequence) divergent to the plus infinity | (is) divergent_to+infty | (limfunc1:def 4) | a is divergent_to+infty | [The real sequence a is divergent to the plus infinity, that is , a →+∞.] | |||||||||
8 | 5 | →-∞ | (for a real sequence) divergent to the minus infinity | (is) divergent_to-infty | (limfunc1:def 5) | a is divergent_to-infty | [The real sequence a is divergent to the minus infinity, that is , a →-∞.] | |||||||||
8 | 6 | limit b of a real function(x → a ) | \lim_{x \to a} f(x) = b | lim( , ) | (limfunc3: def 4) | lim(f ,a) = b | [f is convergent to b in a.] | |||||||||
8 | 7 | limit b of a real function(x → a + 0 ) | \lim_{x \to a+0 } f(x)= b | lim_right( , ) | (limfunc2: def 8) | lim_right(f ,a) = b | [f is right-convergent to b in a.] | |||||||||
8 | 8 | limit b of a real function(x → a - 0 ) | \lim_{x \to a-0 } f(x)= b | lim_left( , ) | (limfunc2: def 7) | lim_left(f ,a) = b | [f is left-convergent to b in a.] | |||||||||
8 | 9 | a real function f is divergent to +∞(x → a) | \lim_{x \to a } f(x)= +\infty | is_divergent_to+infty_in | (limfunc3: def 2) | f is_divergent_to+infty_in a | [f is divergent to +∞ in a.] | |||||||||
8 | 10 | a real function f is divergent to -∞(x → a) | \lim_{x \to a } f(x)= -\infty | is_divergent_to-infty_in | (limfunc3: def 3) | f is_divergent_to-infty_in a | [f is divergent to -∞ in a.] | |||||||||
8 | 11 | a real function f is divergent to +∞(x → a + 0 ) | \lim_{x \to a+0 } f(x)= +\infty | is_right_divergent_to+infty_in | (limfunc2:def 5) | f is_ right_divergent_to+infty_in a | [f is right-divergent to +∞ in a.] | |||||||||
8 | 12 | a real function f is divergent to -∞(x → a + 0 ) | \lim_{x \to a+0 } f(x)= -\infty | is_right_divergent_to-infty_in | (limfunc2:def 6) | f is_ right_divergent_to-infty_in a | [f is right-divergent to -∞ in a.] | |||||||||
8 | 13 | a real function f is divergent to +∞(x → a - 0 ) | \lim_{x \to a-0 } f(x)= +\infty | is_left_divergent_to+infty_in | (limfunc2:def 2) | f is_ left_divergent_to+infty_in a | [f is left-divergent to +∞ in a.] | |||||||||
8 | 14 | a real function f is divergent to -∞(x → a - 0 ) | \lim_{x \to a-0 } f(x)= -\infty | is_left_divergent_to-infty_in | (limfunc2:def 3) | f is_ left_divergent_to-infty_in a | [f is left-divergent to -∞ in a.] | |||||||||
8 | 15 | limit of a real function(x → +∞ ) | \lim_{x \to +\infty } f(x)= a | lim_in+infty | (limfunc1:def 12) | lim_in+infty f = a | [the limit a of a real function f in the plus infinity] | |||||||||
8 | 16 | limit of a real function(x → -∞ ) | \lim_{x \to -\infty } f(x)= a | lim_in-infty | (limfunc1:def 13) | lim_in-infty f = a | [the limit a of a real function f in the minus infinity] | |||||||||
8 | 17 | (for a real function) divergent to the plus infinity (x →+∞) | \lim_{x \to +\infty } f(x)= +\infty | (is) divergent_in+infty_to-infty | (limfunc1:def 7) | f is divergent_in+infty_to-infty | [The real function f is divergent to the plus infinity when x →+∞.] | |||||||||
8 | 18 | (for a real function) divergent to the minus infinity (x →+∞) | \lim_{x \to +\infty } f(x)= -\infty | (is) divergent_in+infty_to-infty | (limfunc1:def 8) | f is divergent_in+infty_to-infty | [The real function f is divergent to the minus infinity when x →+∞.] | |||||||||
8 | 19 | (for a real function) divergent to the plus infinity (x →-∞) | \lim_{x \to -\infty } f(x)= +\infty | (is) divergent_in-infty_to+infty | (limfunc1:def 10) | f is divergent_in-infty_to+infty | [The real function f is divergent to the plus infinity when x →-∞.] | |||||||||
8 | 20 | (for a real function) divergent to the minus infinity (x →-∞) | \lim_{x \to -\infty } f(x)= -\infty | (is) divergent_in-infty_to-infty | (limfunc1:def 11) | f is divergent_in-infty_to-infty | [The real function f is divergent to the minus infinity when x →-∞.] | |||||||||
9 | 0 | <The notations for differentiation and integral> | ||||||||||||||
9 | 1 | ( , ) | open interval | ]. , .[ | (rcomp_1:def 2) | ].0 , 1.[ | [This is the open interval between 0 and 1.] | |||||||||
9 | 2 | ] , [ | open interval | ]. , .[ | (rcomp_1:def 2) | ].0 , 1.[ | [This is the open interval between 0 and 1.] | |||||||||
9 | 3 | f’(a) | differential coefficient of real function f in a | diff(f, a) | (fdiff_1:def 6) | diff(f + g, a) = diff(f, a) + diff(g, a) | [This means (f + g)’(a) = f’(a) + g’(a)] | |||||||||
9 | 4 | f ‘ (x) (x∈a) | the differential of a real function f differentiable on a ⊆ R | f `|a | (fdiff_1:def 8) | f `|REAL | [This is the differential of the real function f differentiable on R.] | |||||||||
9 | 5 | f ‘ | the differential of a real function f differentiable on R | f `|REAL | (fdiff_1:def 8) | (f `|REAL).a | [This is the differential coefficient of the real function f in a .] | |||||||||
9 | 6 | ∫f(x)dx | indefinite Riemann integral of a real function | \int f(x) dx | integral | [integra1:def 18] | ||||||||||
10 | 0 | <The notations for geometry> | ||||||||||||||
10 | 1 | AB | line through A and B in 3 dimentional Euclidian space | Line( , ) | (euclid_1:def 1) | 1 | Line(A,B) st A, B in REAL 3 | [line through A and B in 3 dimentional Euclidian space, where A, B are real 3-tuples.] | ||||||||
10 | 1.1 | 2 | for A, B st A, B in REAL 3 holds Line(A,B) = Line(B,A) | [line through A and B is equal to line through B and A.] | ||||||||||||
11 | 0 | <The notations for probability> | ||||||||||||||
11 | 1 | Pr | probability | Probability (of ) | (prob_1:def 13) | Probability of X | [This means Pr(X), that is, the probability of an event X.] | |||||||||
12 | 0 | <The notations for vectors and matrices> | ||||||||||||||
12 | 1 | A is an n×m matrix over R | A_{n m} | A is Matrix of n,m,REAL | (matrix_1: def 3) | |||||||||||
12 | 2 | A is an n×m matrix over C | A_{n m} | A is Matrix of n,m,COMPLEX | (matrix_1: def 3) | |||||||||||
12 | 3 | 1×…matrix a (line vector) | (\vec{a}) | <*a*> | (matrix_1:11) | |||||||||||
12 | 4 | 1×nmatrix a (line vector) | (\vec{a}) | <*a*> st width <*a*> = n | (matrix_1:11;matrix_1: def 4) | |||||||||||
12 | 4 | …×1 matrix a (column vector) | (\vec{a})^t | <*a*>@? | (matrix_1:11; matrix_1: def 7 ) | |||||||||||
12 | 5 | n×1 matrix a (column vector) | (\vec{a})^t | <*a*>@ st width <*a*> = n | (matrix_1:11; matrix_1: def 7 ) | |||||||||||
12 | 6 | 2×…matrix | \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix} | <*a,b*> | (matrix_1:12) | |||||||||||
12 | 7 | 2×n matrix | \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix} | <*a,b*> st width <*a,b*> = n | (matrix_1:12; matrix_1: def 4) | |||||||||||
12 | 8 | …×2 matrix | \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t | <*a,b*>@ | (matrix_1:12; matrix_1: def 7) | |||||||||||
12 | 9 | n×2 matrix | \begin{pmatrix} \vec{a} \\ \vec{b} \end{pmatrix}^t | <*a,b*>@ st width <*a*> = n | (matrix_1:12; matrix_1: def 7) | |||||||||||
12 | 10 | 1×1 matrix with element a matrix | (a) | <*<*a*>*> | (matrix_1:15) | |||||||||||
12 | 11 | 1×2 matrix with elements a and b | \begin{pmatrix} a & b \end{pmatrix} | <*<*a*>,<*b*>*> | (matrix_1:15) | |||||||||||
12 | 12 | 2×2 matrix with elements a, b, c and d | \begin{pmatrix} a & b \\ c & d \end{pmatrix} | <*<*a,b*>,<*c,d*>*> | (matrix_1:15) | |||||||||||
12 | 13 | 2×2 matrix with elements a, b, c and d | \begin{pmatrix} a & b \\ c & d \end{pmatrix} | (a,b)][(b,c) | (matrix_2:def 2) | |||||||||||
12 | 14 | (i, j)-element of a matrix a | a_{i j} | A*(i,j) | (matrix_1:def 6) | |||||||||||
12 | 15 | transposed matrix of A | A^t | @ | (matrix_1:def 7) | A@ | [A@ is the transposed matrix of A.] | |||||||||
12 | 16 | + | addition of matrices | + | + | (matrix_1:def 7) | a + b | [the sum of matrices a and b] | ||||||||
12 | 17 | - | minus sign of matrix matrices | - | - | (matrix_1:def 13) | -a | [the inverse of a matrix a with resprect to addition] | ||||||||
12 | 18 | ・ | × | nothing | multiplication of matrices | * | (matrix_3:def 4) | a * b | [the product of matrices a and b] | |||||||
12 | 19 | ( , ) | < , > | the inner product of finite sequences recognized as vectors | “*” | (fvsum_1:def 10) | a“*”b | [the inner product of finite sequences a and b recognized as vectors] | ||||||||
12 | 20 | the n-th line of a matrix a | Line(a,n) | (matrix_1:def 8) | ||||||||||||
12 | 21 | the n-th colum of a matrix a | Col(a,n) | (matrix_1:def 9) | ||||||||||||
12 | 22 | O | n×m zero matrix | 0.(n,m) | (matrix_1:def 11) | |||||||||||
12 | 23 | E | I | n×n unit matrix | 1.(n,m) | (matrix_1:def 12) | ||||||||||
12 | 24 | det a | the determinant of a matrix a | Det | (matrix_1:def 12) | Det a | [the determinant of a matrix a] | |||||||||
{A} | 集合に属性を持たせる | [#] | () | [#]A [topologyの属性] | ||||||||||||
⊂ | ⊆ | Aの部分集合 | Subset of A | Subset of A | ||||||||||||
TopStruct (# carrier -> set,topology -> Subset-Family of the carrier #) | TopStruct (# 領域,条件式 #) | TopStruct(#X,T#) | (PRE_TOPC:) | TopStruct(#X,T#) | ||||||||||||
Aの和集合 | union A | |||||||||||||||
順序集合 | 1-sorted | |||||||||||||||
Tの要素、範囲 | the carrier of T | the carrier of T | ||||||||||||||
Aの補集合 | {}A | |||||||||||||||
{A} | 集合A | [#]A | ||||||||||||||
開集合X | [#]X is open | |||||||||||||||
閉集合X | [#]X is closed | |||||||||||||||
写像 | Morphism | |||||||||||||||
relation | 関係 | relation | ||||||||||||||
reflexive | 反射的 | reflexive | ||||||||||||||
symmetric | 対称的 | symmetric | ||||||||||||||
transitive | 推移的 | transitive | ||||||||||||||
antisymmetric | 反対称的 | antisymmetric | ||||||||||||||
一対一の対応 | one-to-one | |||||||||||||||
Cardinality | 濃度 | Cardinality | ||||||||||||||
cardinal Number | 基数 | cardinal Number | ||||||||||||||
finite set | 有限集合 | finite set | ||||||||||||||
(x0,x1,…,xn) | n-tuple | n組の直積集合 | n-tuple | |||||||||||||
Inverse mapping | 逆写像 | Inverse mapping | ||||||||||||||
element | 要素、元 | Element | ||||||||||||||
definition(定義) + predicate(述語) | defpred | |||||||||||||||
述語(predicate) | pred | |||||||||||||||
then + thus | hence | |||||||||||||||
IDENTITY RELATION | 同値関係 | id | ||||||||||||||
概念の包含関係をしめすときに使う | cluster | |||||||||||||||
内包 | Int | TOPS_1 | Int [#]A | |||||||||||||
∂A | 外包 | boundary | TOPS_1 | A is boundary | ||||||||||||
X1-X2| | X1,X2の距離 | dist(X1,X2) | JGRAPH_1 | dist(X1,X2) | ||||||||||||
距離空間 | MetrSpace | |||||||||||||||
関数の要素 | PartFunc | |||||||||||||||
bi | i番目の要素 | b/.i | BINARITH |