中学受験理科

出典: フリー教科書『ウィキブックス(Wikibooks)』
ナビゲーションに移動 検索に移動

Main Page > 小学校・中学校・高等学校の学習 > 小学校の学習 > 中学受験参考書 > 中学受験理科

現在は、「小学校理科」から内容を一部改変して掲載しています。

目次

生物分野[編集]

植物[編集]

植物のつくり[編集]

植物の種子[編集]

植物の種子のつくり[編集]
種子の発芽と成長[編集]

植物が土のなかから芽をだすことを 発芽といいます。

もしも、植物が発芽したあとに、光に当てずに、かげになる場所に置いていたり、肥料をあたえなかったりすれば、しっかりとした植物はできません。

太陽の光のことを、日光といいます。

植物の成長には、発芽で必要だった水・空気・適当な温度のほかに 日光 が必要になります。また、かならずしも必要ではないですが、肥料がくわえられると、育ちが よくなります。鉢植はちうえなどに植えられた植物は、肥料がないと、外から土に栄養が流れ込まないので、植物の育ちが、かなり悪くなります。


日当たりがわるいと、植物は、緑色にはなりません。日当たりがないと、くきも細く、葉も小さいです。

光合成は、主に植物の葉で、おこなわれる。

植物は、葉で、日光を受けることで、栄養をつくっています。この栄養は、「でんぷん」という物質をつくっています。

この日光をあびてデンプンをつくることを 光合成といいます。


シロイヌナズナの気孔。(上)開いた気孔、(下)閉じた気孔

光合成では、空気中の二酸化炭素を吸収し、酸素を放出しています。 葉の裏を、けんび鏡でよくみると、穴があります。この穴は、 こうといって、この穴から、空気が取り入れられ、光合成につかわれています。

光合成は、葉の、緑色の 「葉緑体ようりょくたい」という部分でおこなわれています。 植物が緑色をしているのは、この、光合成に必要である葉緑体の色が、緑色だからです。


でんぷん
ヨウそデンプン反応

また、じゃがいもの切り口からでる白い汁にも、少しヨウ素をたらすと、青むらさき色になります。

これは、 デンプン という物質が含まれてていて、そのデンプンとヨウそが、反応をしたからです。

このデンプンとヨウ素との反応を ヨウ素デンプン反応 といいます。

このデンプンは、植物が成長するために、植物が作った栄養です。

ヨウ素デンプン反応は、ある物が、デンプンなのか、それとも、デンプンではないのかを、しらべるのに利用されます。

  • 肥料(ひりょう)

肥料には、さまざまな養分があるが、とくに肥料として有名な養分に、 ちっ素リンカリウム がある。この3つの成分を、 肥料の3要素 とか「肥料の三大要素」などといいます。

このほか、マグネシウムや鉄やカルシウムなども、肥料になる。 とくに、3要素としてあげた養分(ちっ素・リン・カリウム)が、植物の生育に多く必要になる。

花のつくり[編集]

花びら (petal) と、がく (sepal)

花には、 花びら と、花びらの根本のほうにある緑色の先のいくつか分かれた がく があります。

アサガオでは、がくは、5つに分かれています。アブラナでは、がくは、4枚です。

植物の種類によってちがいはあるものの、ほとんどの植物の花には、 花びら と がく と おしべ と めしべ があります。この4つを 花の4要素 といいます。

ただし、カボチャの花では、おしべは、お花にしかありませんし、めしべはめ花にしか、ありません。 カボチャのお花には、花びらや、がくがあります。カボチャのめ花には、「花びら」と、「がく」と、「子房しぼう」があります。 このように、お花やめ花に分かれていても、がくはあります。

なお、カボチャのがくは5枚です。お花も、め花も、がくは5枚です。 め花の子ぼうは、カボチャの実になります。

ヘチマも、花が、お花とめ花に分かれています。お花のがくの下には、子ぼうがあります。ヘチマの子ぼうは、ヘチマの実になります。

ウリ科

カボチャもヘチマもヒョウタンも、ウリ科の植物です。

花の構造; :めしべ, Stigma:柱頭、Style:花柱、Ovary:子房、Ovule:はいしゅ。 :おしべ, Stamen
  • おしべ
チューリップの、おしべの先についている花粉。

おしべの先には、ふくらんだ物が付いています。これには花粉がつまっています。このおしべの先にある、花粉のふくろを、 やく といいます。「やく」のことを、「花粉ぶくろ」ということもあります。

  • めしべ

めしべは、 柱頭と、 花柱 と、 子房 の3つの部分からなります。

  • 柱頭(ちゅうとう)

めしべの先にある、ふくらんだ部分です。多くの植物では、柱頭には、ねばねばとした液体がついています。この「ねばねば」は、花粉をつけやすくするためです。花粉が柱頭につくことを受粉といいます。花粉は、おしべの先の「やく」から出るのでしたね。

  • 子ぼう

めしべの根元にある、ふくらんだ部分です。子ぼうは、受粉のあとに、子ぼうが実になります。「受粉」とは、柱頭の先に、花粉がつくことでしたね。そして、花粉は、おしべの先の、「やく」から、出るのでしたね。 柱頭に花粉がつかないと、子ぼうは、実になりません。

子房は、植物によって、「花びら」や「がく」の上にある場合と、花びらの下にある場合があります。 アサガオやアブラナでは、子ぼうは、花びらの上にあります。 ヘチマやカボチャでは、子ぼうは、花びらの下にあります。

  • 花柱(かちゅう)

柱頭と子ぼうとのあいだの、やや細い部分です。

めしべにある柱頭に、花粉がつくことを 受粉 といいます。受粉をした花には、変化が起こります。 柱頭いがいの場所についても、受粉ではありません。子房に花粉がついたのは、柱頭ではありません。子ぼうに花粉がついても、とくに変化は起きません。 花柱に花粉がついても、とくに変化は起きません。

受粉をして花に変化がおきるのは、柱頭に花粉がついた場合だけです。だから、柱頭に、花粉がついたばあいだけを、受粉といいます。

柱頭は、ほとんどの植物では、柱頭は「ねばねば」していて、花粉がつきやすいようになっていることが多いです。

「子ぼう」の中には、「胚珠はいしゅ」があります。柱頭に花粉がついて、受粉をすると、やがて子ぼうがふくらんでいき、そして実になります。実のなかには、種があります。この種は、元は、胚珠でした。

受粉のしかた
  • 自家受粉

アサガオでは、おしべとめしべが同じ花にあります。このような花の場合、花が開くと、おしべの花粉が、めしべにふりかかります。このような仕組みの受粉を 自家受粉といいます。自家受粉では、虫や鳥などの助けは、必要ありません。

自家受粉の例:アサガオ、イネ、エンドウなど


  • 他家受粉
虫ばい花の例:イチゴの花とミツバチ

めしべの柱頭が、ほかの株の花のおしべから出た花粉と、受粉をすることです。 花粉を運ぶ方法は、虫によって運ばせる方法や、風によって飛ばす方法などがあります。

  • 虫媒花

虫によって、はこばせる方法は、花のみつを吸いにきた虫に、花粉がつくようにする方法です。 このような仕組みで花粉を虫にはこばせる花を、 虫媒花ちゅうばいかといいます。虫媒花は、他家受粉に、ふくまれます。 虫媒花は、花粉がねばねばしていることが多いです。これは、虫の体に花粉がつくうえで、都合がよいです。 また、虫媒花の、花の色や大きさは、目立つものが多いです。これは、虫に気づかれやすくするために、都合がよいと考えられています。 虫媒花は、みつをだします。


虫ばい花の例: アブラナ、ヒマワリ、カボチャなど


  • 風媒花
風ばい花の例:スギのお花と、め花

風によって花粉を運ばせる方法の花を、 風媒花ふうばいかといいます。風媒花は、他家受粉に、ふくまれます。 花粉は、さらさらしていて、軽いものが多いです。これは、風に飛ばされやすくて、都合がよいと考えられています。

風媒花は、花が目立ちません。また、風媒花は、みつが少ないです。

風媒花の例: スギ、 イネ、マツ 、トウモロコシ 、ムギ 、ススキ 、ヤナギ など


多くの植物で、虫媒花と風媒花のどちらかが、花粉の運び方ですが、植物のなかには、ほかの運び方で花粉を運ぶものも、あります。水媒花すいばいかや、鳥媒花ちょうばいかがある。他家受粉に関しては、水媒花も、鳥媒花も、他家受粉です。

  • 水媒花
水ばい花の例:お花をつけたマツモ

花粉を水に流させて、花粉をはこびます。 この水ばい花は、水中に生えている植物で、みられることがあります。

水ばい花の例: クロモ、 キンギョモなど


  • 鳥媒花
みつをすう、シロアゴサファイアハチドリ

鳥の体に花粉をつけて、花粉をはこぶ花です。木に咲く花に多いです。 冬ごろに咲く花が多いです。冬は、虫がすくないので、虫をエサにしている鳥は、少ない虫のかわりに、花のみつをすう場合があるのです。


鳥ばい花の例:ツバキ、サザンカ、ビワなど


人工受粉

人間が、手作業で、花粉をめしべの柱頭にくっつける受粉のしかたを、人工受粉といいます。

農業で、リンゴやナシなど、実を確実に作らせて、収穫を多く得たい場合に、人工受粉が使われることが多いです。

呼吸[編集]

光合成[編集]

蒸散[編集]

植物の冬ごし[編集]

森林の構成[編集]

動物[編集]

セキツイ動物の分類[編集]

背骨がある動物のことをセキツイ動物といいます。

セキツイ動物には、魚類両生類は虫類鳥類乳類の、全部で5種類がある。


  • 魚類
魚類

魚類というのは、いっぱんにいう「さかな」のことです。 メダカなどが魚類です。魚類は、水中で生活しています。一生エラ呼吸をします。 子を生むときは、水中で卵でうみます。変温動物です。


両生類
  • 両生類

両生類には、カエルなどがあります。カエルの子はオタマジャクシですが、オタマジャクシは水中で生活していて、エラで呼吸しています。オタマジャクシが成長するとカエルになりますが、カエルは肺で呼吸しています。

カエルは陸地で生活しています。

このような、子のときはエラ呼吸を、親になると肺呼吸をする動物を両生類といいます。

子を生むときは、水中で卵でうみます。変温動物です。



は虫類
  • は虫類

トカゲなどが、は虫類です。は虫類は、肺呼吸をします。 子を生むときは、陸上で卵でうみます。変温動物です。


  • 鳥類
鳥類

鳥類とは、いっぱんにいう「とり」のことです。スズメやニワトリやハトが鳥類です。ペンギンも鳥類です。 ほとんどの鳥類は、飛ぶことができますが、ダチョウ、ペンギンなど、飛べないものもいます。 鳥類は、肺呼吸をします。 鳥類には、くちばしがあるものが多いです。 鳥類は、子を生むときは、陸上でたまごでうみます。こう温動物(まわりの温度によって体温が変化しない動物)です。


  • 哺乳類
ほにゅう類のウシの母親が、子ウシに乳を、のませているところ。
いろいろな、哺乳類

母親が、子に乳をのませて育てるので、哺乳類といいます。

哺乳類には、イヌやネコやウサギやウマやサルやウシやヒトなどがいます。

哺乳類は、肺呼吸をします。

哺乳類は、親に似た形の子を産みます。恒温動物です。

しかし、カモノハシなど、卵を産む哺乳類もいます。

節足動物[編集]

こん虫[編集]

水中の微生物[編集]

メダカ[編集]

食物連鎖[編集]

人体[編集]

消化器官[編集]

呼吸器官[編集]

心臓と血液[編集]

平衡器官[編集]

生殖器官[編集]

運動器官[編集]

排出器官[編集]

環境問題[編集]

地球温暖化[編集]

酸性雨[編集]

オゾン層の破壊[編集]

砂漠化[編集]

環境を守る取り組み[編集]

地学分野[編集]

岩石と地層[編集]

流水の働きと地形[編集]

流れる水のはたらき[編集]

流れる水には、土や砂などを、おしながす・けずりとる・つもらせるという三つのはたらきがあります。

水たまり

たとえば雨が降った日の水たまりなどをみると、最初は水がたまっていくだけですが、そのうち、水たまりから水があふれて、高いところから低いところに流れていき、とても小さな川のようになります。また、水たまりがいくつもあるので、小さな川もつながっていき、水たまりだったところも、いくつかつながっていきます。 雨が上がってから、水が流れていた水たまりからつくられた小さな流れのあった場所を見ると分かるのですが、流れのあたっところが、けずりとられて、くぼんでいきます。

雨の日の、土の上に出きた水たまりや水の流れなどでは、水が土をけずりとっているので、水は茶色く、にごっています。

流れていった雨水や、水たまりにあった水は、そのあと、どこへ行くかというと、地下にしみこんで行ったり、あるいは、{ruby|溝|みぞ}}などに流れこんだりします。


雨の日の水たまりからも、「おしながす・けずりとる・つもらせる」の三つの作用が確認できます。 流れる水が地面を、けずり取る作用を 侵食しんしょく と言います。

けずり取られた土や砂は、そのまま流れによって下流へと運ばれていきますが、この運ぶ作用を運搬うんぱんといいます。

この運ぱんは、水の流れが速いほど、大きな物が運べるようになります。水の流れがおそい場所では、運べなくなるので、その場所に、運んできた物が、たまっていきます。この、流れがおそい場所に、物がたまる作用を 堆積たいせきと言います。


けずる作用も、運ぶ作用も、流れが速いほど、強くなります。

川の様子[編集]
かも川(左)と、高野たかの川(右)[どちらも京都府]

川の中での砂や石は、大きさや重さによって、流され方が、ちがう。砂と石なら、砂のほうが流されやすい。このように、つぶが小さな物ほど、ながされやすい。

粘土ねんどは、つぶ自体は細かいので、かわいた粘土や、固まっていない粘土は、流されやすいです。

石でも、小石と大きな石だったら、小さい石ほど流されやすいです。

川には、曲がっているところがある場合もあります。曲がっている川では、外側ほど流れが速く、内側は流れがおそいです。

このため、外側は、侵食によってけずられるので、がけのように水深が深くなっています。いっぽう、内側は、堆積によって、石や砂や粘土が積もっています。このようにして、川の曲がりの内側では、川原(河原)かわらができやすいです。

太陽と気象[編集]

太陽の動き[編集]

気温と地温[編集]

[編集]

百葉箱と温度計[編集]

湿度[編集]

季節と気象[編集]

天体[編集]

[編集]

星座[編集]

季節と星座[編集]
北の空の星座[編集]

そのほかの惑星[編集]

物理分野[編集]

[編集]

光の進み方[編集]

光の反射と鏡[編集]

光の屈折[編集]

光の屈折とレンズ[編集]

光は直線的に進むことが知られている。例えば、暗い箱を作り、その壁に小さい穴をあけると、穴から入った光がそのまま、まっすぐにすすむ様子がわかる。

光がまっすぐにすすむことを、光の 直進 と、いいます。

この光が直進する性質は、空気中ではいつでも成り立ち、太陽や電球などから発せられた光は、発せられた方向に直進する。

なお、暗い箱に2個の穴をあけたとき、そこから日光を差し込んだばあい、2本の光のみちすじは、平行である。

これは、太陽からは、四方八方に光が発せられるのだが、豆電球の光とおなじように、太陽からは四方八方に光が発せられるのだが、太陽は、とても遠くにあるので、地球にとどく光は、太陽から発せられた光の一部なので、おなじ向きの光ばかりが、地球にとどくからである。

だから、日光は、ほぼ平行なのである。

算数では、平行とは、「どこまで、のばしても、ぜったいに、まじわらない」ということであった。 日光は、こまかいことを言えば、地球と太陽とのキョリまで、のばせば、まじわってしまうので、正確には平行ではない。

だが、地球上では、ほぼ平行なので、実用上は、日光は平行として、あつかうことが多い。

ここでも、日光は平行であることとする。


反射と屈折[編集]

光が鏡などに当たった時には、光は 反射 します。


反射面に垂直な直線(垂線または法線と、いう。)と入射した光とがなす角を 入射角にゅうしゃかくと呼び、法線と反射した光とがなす角を 反射角はんしゃかく と呼びます。
このとき、

入射角 = 反射角

が成り立ちます。

反射

上の図では が入射角に対応し、 が反射角に対応します。図でわかるとおり、入射角と反射角は等しいです。 は「シータ」と読みます。「θ」はギリシャ文字です。

  • 屈折

また、例えば空気中を直進して来た光が水面を通過したときには、光は水面でその方向を変えることが知られています。この現象を光の 屈折くっせつと呼びます。屈折した光と物質境界の垂直方向(法線)とがなす角度を 屈折角と呼びます。


  • 屈折の図


例えば細長い棒を水の中に差し入れると、その棒は曲がって見える。これは、光の屈折によるものです。 また、透明であるガラス瓶やコップが目に見えるのも、この屈折の効果によります。

  • 全反射
全反射
光ファイバー

屈折率が大きいばいしつ{{{2}}}媒質から小さい媒質に光が入るときに、入射光が境界面を透過せず、すべて反射する現象が起きる。これを 全反射 という。全反射は、入射角が大きくなると起こる。 応用例として、光ファイバーでは光信号を全反射させることで信号を送っている。

  • 乱反射(らんはんしゃ)
でこぼこした表面からの乱反射

紙の表面や、板の表面など、ふつうのものの表面は、たいらに見えても、よくよく見ると、こまかいデコボコがいくつもあります。 このデコボコの向きが、それぞれバラバラの向きなので、反射する光のむきも、バラバラになります。

この、光が、バラバラな方向に反射する現象を 乱反射と、いいます。

乱反射のおかげで、わたしたちは、物体を、どの方向からでも、見ることができるのです。

  • まがった鏡の反射
とつ面鏡での反射。

鏡(かがみ)が曲がっている場合、もとの大きさよりも、鏡にうつる像は、ちがった大きさで見えます。


鏡の面が球面のように、でっぱっている鏡を とつきょう といいます。

とつ面鏡では、かがみのまわりの広い範囲はんいをうつしますが、そのぶん、かがみに うつる像は、もとの大きさよりも小さく、うつります。

おう面鏡での拡大のしくみ

ぎゃくに、鏡がへこんでいる鏡を とつ面鏡といいます。 おう面鏡では、うつす範囲は小さいですが、うつされたものは、大きくうつります。

おう面鏡は、化粧用の鏡などで実用化されています。 また、スプーンのさきの、へこんでいる部分を、おう面鏡のかわりにすることも出来ます。


おう面鏡で、うつった像が、上下がさかさまになる場合

凹面鏡では、上下がさかさまに映る場合があります。これは鏡の 焦点しょうてんきょり と、観察する人と鏡との きょり との関係によってきまります。

光の屈折とレンズ[編集]

ここでは、レンズを用いたときに光が描く軌跡についてまとめる。ここでは、単純なレンズである凸レンズについて扱う。一般に、虫眼鏡や顕微けんび鏡など物体を拡大して見るための器具は、光の方向を変えるために、凸レンズを用いている。また、遠視用の眼鏡にも用いられる。

Magnifying glass.jpg

凸レンズは、レンズの真ん中がレンズの縁よりも厚くなっている。代表的な凸レンズである球面凸レンズは次のような形をしている。

Junior high sci lens.png

レンズの2つの面は、ある半径の球の一部を切り取った形をしている。このとき、元の球の半径をレンズの曲率半径と呼ぶ(曲率半径はレンズの焦点距離と関連してているが、焦点距離と曲率半径の関係について詳しく扱うことはしない。)。


図1-2 物体が焦点距離より遠いときは実像ができる
図1-3 物体が焦点距離より近いときは虚像ができる

ここでは球面凸レンズを扱う。球面凸レンズは、レンズの両側に焦点と呼ばれる点を持つことが知られている。焦点とレンズの中心との距離はレンズの両側で等しい。この、レンズと焦点との距離を、焦点距離と呼ぶ。焦点距離の記号は、 f(F) で表すことが一般いっぱんである。

一般にレンズはプラスチックやガラスなどの材質で作られるが、これらは光を通す材質であると同時に、空気よりもw:屈折率が高いことが知られている。

既に水と空気の例で説明した通り、光は異なる材質の境界を通過するときに、進む方向を変える。同様に、空気中からレンズを通過するときも、光は方向を変える。実際にレンズを抜けた後に光が向かう方向は、光がレンズに入射する方向と位置が分かれば、計算によってあらかじめ知ることができる。

ここでは特に、光が向かう方向が簡単に定まる場合についてまとめる。球面凸レンズでは一般的に、以下の三つの性質が成り立つ。

  1. レンズの軸に平行な光線は、レンズを抜けた後レンズの焦点を通る。
  2. レンズの中央を通る光線はレンズを抜けた後そのまま直進する。
  3. レンズの焦点を通過した光線は、レンズを抜けた後レンズの軸に平行な方向に直進する。
  • 注意

最初の例と最後の例は時間を反対に見ると、同じ事柄を指していることに注意が必要である。時間を反対にするとは、ここでは光の進行方向を逆向きにすることに他ならず、このとき両者は互いに移り変わる。

上で述べたレンズの性質を利用して、レンズを通り抜けた光が結ぶ像の位置と大きさについて調べることができる。レンズが結ぶ像の性質は、対応する物体がレンズの焦点距離より遠くにあるかどうかで変化する。ここではまず物体がレンズの焦点距離より遠くにある場合について述べる。

このとき、物体から放たれる光線は次のような軌跡きせきをたどる。

図の中で物体の先端からレンズを通過する光線を3本描いたが、この3本はそれぞれ上で挙げた3つの光線に対応している。これらは1点で交わる。

ここで、物体から放たれた光は3本の光線が交わった点に像を作る。この像を実像という。実像は常に物体に対して上下、左右がともに逆(倒立とうりつ)の向きで現れ、その大きさとレンズからの距離は、物体とレンズとの距離によって決まる。

実像の大きさと現れる位置の性質は、物体とレンズの距離がレンズの焦点距離の2倍に達したときに変化する。ちょうど2倍のときには、実像の大きさはちょうど物体と同じになり、実像とレンズの距離は物体とレンズの距離と等しくなる。一方、物体とレンズの距離が焦点距離の2倍より大きいときには実像の大きさは実際の物体の大きさよりも小さくなり、実像の位置は、物体とレンズの距離よりもレンズに近くなる。一方、物体とレンズの距離が焦点距離の2倍より小さいときには実像の大きさは実際の物体の大きさよりも大きくなり、実像の位置は、物体とレンズの距離よりもレンズから遠くなる。


一方、物体の位置がレンズの焦点距離よりもレンズに近い場合には、光線が像を結ぶ位置は変化する。このとき生じる像を虚像きょぞうと呼ぶ。虚像は常に物体よりも大きくなる像であり、虫眼鏡で物体が拡大して見えるのは物体の虚像を観察していることに注意が必要である。虚像は実像の場合と違い正立で現れ、常にレンズに対して物体が存在する側に現れる。

物体とレンズとの距離と、結ばれる像の位置と大きさの関係
物体とレンズとの距離 結ばれる像の位置 大きさと種類 像の向き
焦点距離の内側(0-1倍) 物体と同じ側 物体より大きい虚像 正立
焦点距離の1-2倍 物体と逆側 物体より大きい実像 倒立
焦点距離の2倍以上 物体と逆側 物体より小さい実像 倒立
  • ピンホールカメラの原理
ピンホールカメラの原理。物体から発した光は小さな穴をとおり像を結ぶ

ピンホールカメラは、レンズを使わずに針穴(ピンホール)を利用したカメラである。針穴写真機ともいう。

光の屈折と水・ガラス[編集]

[編集]

音の性質と伝わり方[編集]

音の3要素[編集]

音の速さ[編集]

電流・磁石[編集]

回路記号[編集]

電気回路の配線を、図で説明するときに、毎回、写真のようなそっくりな絵で説明すると、せつめいする作業が、たいへんな手間になるので、記号が回路図をかくときに、もちいられます。

乾電池。
長い側が、+極です。
短い側が、ー極です。

電池には+極とー極があるが、回路記号では線が長い方が+極です。実際の電池では、でっぱりのある側が+極です。回路図で、短いがわは、ー極です。 この記号は、おぼえてください。どちらがプラス極の側なのかも、おぼえてください。

まちがえて、ぎゃくにおぼえやすいので、注意してください。

かん電池に豆電球とスイッチをつなぐと、あかりをつけたり消したりできます。また、モーターをつなぐと回転させることもできます。豆電球やモーターを使って、かん電池のはたらきを調べよう。 さて、豆電球はかん電池とつなぐとあかりがつきます。モーターはかん電池とつなぐと回転します。 このあかりや回転をもっと明るくしたり、速くしたりできないのでしょうか。

「かん電池をふやせばいい。」、多くの人がそう答えると思います。でも、かん電池を増やしたからといって、かならず豆電球が明るくなったり速くモーターが回ったりするわけではありません。まず、+極から-極へともどってくるように、輪になるようにつながなければ電気は流れません。電池をいくつかつなぐ方法のしゅるいを2つしょうかいします。

電池のつなぎかた[編集]

  • 直列つなぎ
かん電池の曲を +- +- ・・・・・・とじゅん番にならべてつなぎます。かん電池をふやすとたくさんの電気が流れますので、豆電球は明るくなります。
-+ +-や、+- -+ と、かん電池をつないでも、電気は流れません。
直列つなぎ。
右側がプラス極に、つながっている。
  • 並列(へいれつ)つなぎ
かん電池を横にならべて+極どうし、-極どうしをつなぎます。そして、+極をつないだどう線と-極をつないだどう線をモーターや豆電球につなぎます。豆電球の明るさやモーターの速さは変わりませんが、かん電池は長持ちします。
並列つなぎ
右側がプラス極に、つながっている。
※ 本書で、つぎにおしえる「ていこう」は、小学校では習わないかもしれませんが、ウィキメディア・コモンズ (Wikimedia・Commons) およびウィキブックス (Wikibooks) 日本語版での、画像の用意のつごうで、豆電球の回路図が見当たらないので、かわりに「ていこう」をもちいた回路図を、しょうかいします。豆電球をもちいた回路図については、市販の参考書などを参照してください。なお、中学校では、「ていこう」を習うはずです。

電気を流れにくくする物体のことを、ていこう(抵抗)といいます。

電池と抵抗だけをつないだ簡単な回路図を、れいに、しめします。

かいろず

ていこうの記号は、昔と今とでは、じつは、記号がちがいます。中学受験では両方使われる可能性があります。あたらしいほうは、はこ型の四角い記号が、あたらしい「ていこう」の記号です。ギザギザしたほうは、昔の「ていこう」の記号です。

ていこうの、直列つなぎと並列つなぎを、図にすると、つぎのようになります。

(※ ウィキメディア・コモンズ (Wikimedia・Commons) およびウィキブックス (Wikibooks) 日本語版の画像の用意の都合で、古いほうのギザギザ記号での紹介になっています。)
  • 豆電球

豆電球の回路図は、以下のようになります。

まめ電球の、記号。

×の線は、丸から、はみださずに、書いてください。


  • 回路図の図記号

電流計や、電流計、検流計は、回路にながれている電気のせいしつをはかる道具です。電流計や電圧計は、使い方をまちがえると、こわれます。

電流とは、回路がつながっているときの、かん電池とどう線の中での、電気のながれのことです。電気は、プラスきょくから出てきて、どう線を通って、マイナスきょくにもどるのでしたね。電流の単位は アンペア です。アンペアは記号で、「A」とかきます。

電圧とは、電流をながそうとする、強さのことです。電圧の単位は ボルト です。ボルトは記号で V と書きます。ふつうの乾電池の電圧は、だいたい1.5Vくらいです。

光電池[編集]

おおきな光電池。ソーラーパネルともいう。

光電池は光を電気に変えるきかいです。太陽電池とも、いいます。 光電池にも、プラス極とマイナス極があります。 乾電池で、豆電球を明るくさせたり、モーターをまわせたのと同じように、光電池でも、豆電球をつけたり、モーターをまわせたりします。 光電池での、電気をながすつよさは、電池にあてた光がつよいほど、光電池の電気もつよくなります。 なので、たとえば、かがみなどをつかって、光電池に光をあつめると、あつめたぶんだけ、光電池の電気も、つよくなります。

光電池を、紙などで、かげにして、光をさえぎると、電気は、ながれなくなります。 紙をはずして、光電池に、また光にあてると、光電池は、電気を流せるようになります。

乾電池は、つかいつづけると、電気がながせなくなってしまいます。いっぽう、光電池は、おとしたりしてこわさなければ、ずっと、つかえます。このため、光電池のほうが、資源を節約できると考えられています。 光電池のことを、英語で、「ソウラ・セル」というのですが、そのため、光電池をつかった品物の名前が「ソーラー〇〇」というふうな名前がつくことが多いです。 光電池の形は、ひらたい板のような形をしていることがあります。板のような形をしたものをパネルということがあるので、板のような光電池をソーラーパネル(SOLAR PANEL)ということもあります。

ソーラー・カー。

光電池で走る車は、「ソーラー・カー」 といいます。

電磁石[編集]

結論から言おう。じつは、電流のまわりには、磁石のような「磁力」が、発生しているのである。ただし、電流が小さいと、磁力が小さいので、磁力が、はっきりしないことがある。


ぐるぐると、まくと、どうなる? :※ 画像の物は、導線では、ありません。なので、「まき方」だけを、参考にしてください。

電気の作る磁力を強くするには、鉄の棒(ぼう)に、導線をクルクルと何重にも、まきつけます。巻きつけられる金属の棒は、鉄のような磁気をおびる金属でないと、ダメです。ガラスは金属ではありませんし、アルミニウムは磁気を帯びていません。

このように、磁化をすることのできる金属のぼうに、導線をまきつけたものを、コイルと言います。

このコイルは、電気を流すと、磁石のように磁力を発生するので、電磁石(でんじしゃく)といいます。
電磁石の性質

電磁石が磁力を発生するのは、電気を流しているあいだだけです。回路のスイッチを切ったり、電池をはずしたりして、電気を止めると、電磁石は、磁力をもたなくなります。

電磁石にも、N極と、S極があります。電磁石でも、同じ極どうしは、反発し合います。電磁石でも、違う極どうしは、引きつけ合います。


電磁石を強くする

電磁石のコイルは、鉄の棒が無くても、電気を流せば、コイルは電磁石になります。ですが、鉄の棒が入ってないと、磁力は弱くなります。なので、ふつうの電磁石は、鉄の棒を入れていることが多いです。

電磁石のコイルにいれる鉄の棒のことを、しんといいます。芯を入れると、電磁石が強くなります。

コイルの、導線をまく回数をふやしたら、どうなるでしょうか。 50回だけ導線をまいた電磁石と、100回だけ導線をまいた電磁石では、どちらが、磁力が強いでしょうか。

じつは,導線をまいた回数が多くなるほど、電磁石の磁力は、強くなります。 電磁石のコイルは、導線の巻き数が多くなるほど、電磁石の磁力も、つよくなります。


また、電流が大きくなるほど、電磁石の磁力も大きくなります。たとえば、ふたつの乾電池を直列つなぎにして、1個の電磁石につなげると、1個の乾電池しか使っていない時よりも、電磁石の磁力は強くなります。


電磁石の磁力の向き

電磁石の、磁力の向きは、じつは、電流の方向にたいして、決まっています。


磁力線

磁場の向きが分かるように図示しよう。磁石の作る磁場の方向は、砂鉄の粉末を磁石に、ちりばめて、ふりかけることで観察できる。

これを図示すると、下図のようになる。

磁力線の図示

このような、磁力の向きを含めた、磁力の図を 磁力線 といいます。磁力線の向きの決め方は、磁石のN極から磁力線が出て、S極に磁力線が吸収されると、決められています。棒磁石では、磁力の発生源(はっせいげん)となる場所が、棒磁石のはしに集中しています。そこで、棒磁石のはじっこの、先端せんたんのあたりを磁極といいます。

磁力線の向きを、どうやって確認するかというと、方位磁針を用いればいいのです。その場所での、方位磁針のN極の向きが、その場所での磁力線の向きになります。

電磁石の磁力線の書き方を説明する前に、まず棒磁石の磁力線の書き方を説明しましょう。 永久磁石が作る磁力線を図に描く場合は、N極から磁力線が出て、S極で磁力線が吸収されるように書きます。磁力線は、磁力の向きを図示したものなので、磁極以外の場所では、磁力線が分岐することはありません。N極以外の場所では磁力線の本数が増えません。S極以外の場所で磁力線が消えません。

また、磁力線が交わったりしてはいけないし、枝分かれもしてはいけません。もし、交わらして磁力線を書くと、その場所での方位磁針の向きが2通りあることになり、おかしな図になってしまいます。

  • 電流の作る磁界
Junior high sci magnetic field.png

電流は、その周囲に磁界を作る。これは方位磁針を電気回路の近くに置くことで確認できる。

右ねじの法則

まず、電流の向きの決め方を、復習します。プラス極から電流は流れでて、電流は回路を通って、さいごはマイナス極にもどるのでした。

導線のまっすぐな部分の電流がつくる磁力の向きは、じつは、電流の向きに右ねじを進めるときに、右ねじを回す向きと同じです。この電流の向きと磁力の向きとの関係を 右ねじの法則 といいます。

コイルのような曲がった部分を持つ回路での、磁界の向きも、コイルの各部分の電流が右ねじの法則に従っています。

コイルでの、磁力の向きは、方位磁針で確認できます。

コイルでの、磁力の向きの図。
電流が、右向きの場合の図です。赤い曲線が磁力の向き。コイルの線にそって、手で右ねじを回す動きをして確認すると、たしかに、磁力の向きは、赤い線の向きになります。
電磁誘導と誘導電流[編集]

コイルを置き、その回りで磁石を動かす実験を行なってみる。ただし、コイルの両端には電圧計を接続し、コイルに流れる電流の電圧を測定するものとする。この実験では、コイルの回りで磁石を動かしたときに、コイルの導線に電流が流れるという結果が得られるはずである。流れる電流の大きさは、磁石を動かす速度に比例し、また、磁石の作りだす磁界の強さに比例する。例えコイルの中を磁石からの磁界が横切っていても、磁石が静止しているときには、コイルの中を電流が流れることはない。電流が生じるのは磁石を動かしたときだけである。


  • 注意

磁石を動かして生じた電流の向きは、その電流によってコイルの回りに生じる磁界が磁石によって生じた磁界を打ち消すように電流が流れる。

導線のある場所の磁力が弱まると、その磁界の変化を妨げる方向に電流が流れる。たとえば、仮にコイルに永久磁石を近づけた時に右回りに電流が流れたとしよう。すると、このコイルから永久磁石を遠ざけると、今度は反対向きである左回りに電流が流れることになるのである。このような現象を 電磁誘導でんじゆうどうと呼び、磁石の動きによって生じた電流を 誘導電流 と呼ぶ。

電磁誘導で電流が流れるのは、磁力が変化している間のみである。永久磁石をコイルから遠いところからコイルに近づけたら、その磁石を動かしている間は電流が流れる。しかし、近づけおわった状態で磁石を固定していても誘導電流は流れない。

誘導電流の向きは、誘導電流の作る磁界が、磁石の場所の変化による磁界の変化を妨げる向きである。たとえば磁石を近づけた場合は、誘導電流の磁界の向きは、その磁石の磁力に反発する向きであり、実際に磁石は反発力を受け、回路から磁石の移動を妨害される力を受ける。 同様に、磁石を遠ざけている間の誘導電流の向きは、磁力を強める向きであり、実際に磁石は吸引力を受け、回路から磁石の移動を妨害される力を受ける。

このように、磁界が変化している間のみ、誘導電流が流れる。また、その誘導電流の向きは磁界の変化を妨げる向きである。 これを レンツの法則 という。

現在の火力発電や水力発電の発電所でも同じ原理を用いて発電を行なっている。火力発電では磁界の中で蒸気を用いてタービンをまわし、それによって誘導電流を発生させるのである。

力と運動[編集]

ばね[編集]

てこ[編集]

「てこ」の概略がいりゃく図。三角形のところが支点に相当する。 :じっさいに、この形だと、支点の上の板がすべってしまうので、実物のてこでは、すべらないように、固定してある。

てこがつりあっている時、「うでの長さ」と「物の重さ」をかけた量が、支点の左右で同じ大きさになっています。 このことを、 てこの原理 と、いいます。

てこの原理を利用すると、小さい力で、重い物を、もちあげることが、できます。

この図で、人間が持ってるところが力点。箱に接触している場所が作用点。
てこの原理における、支点, 力点, 作用点の位置。

てこで、人間が力を加えるために持つところを、 力点 と、いいます。

てこを支えている、回転軸 の、中心の部分を、 支点 と、いいます。

そして、てこによって、持ちあげたい物に、力がくわえられる場所を 作用点という。

左の図で見れば、力 F1 と支点と力点との長さ d1 の、かけあわせの F1×d1 と、力 F2 と支点から作用点の長さ d2 の、かけあわせの F2×d2 との大きさは同じです。 つまり、式で書くと、

F1×d1 = F2×d2

です。

なので、少ない力で、てこで重いものを持ち上げるには、支点と力点の距離を長くすれば、そのぶん、力点に加える力は小さくなります。 また、支点と作用点の長さを短くすれば、そのぶん、作用点に大きな力がくわえられるので、てこで持ち上げやすくなります。


様々なピンセット
ピンセットでの、支点・力点・作用点の位置。

なお、ピンセットに、てこの原理を当てはめて、考えてみると、ピンセットの支点は、はじっこにあります。ピンセットの作用点は、ピンセットの先の、物をつまむ部分です。

なお、力と、支点からの距離を、掛けた量を、モーメントと言います。たとえば力 F1 と支点と力点との長さを d1 とした場合、 F1×d1 はモーメントです。 F2×d2 も、モーメントです。

  • くぎぬき
釘抜くぎぬ
釘抜きでの、支点・力点・作用点の位置。

支点・力点・作用点は、かならずしも、一直線上には、あるとは、かぎらない。

身の回りのてこ

輪軸[編集]

輪じくの仕組みを活用した、巻き上げ機。
りんじくの原理図。力の関係を見やすくするため、ひも をつけて、おもり をつけてある。内側の輪から下がっている ひも と、外側の輪から下がっている ひも は、つながっていない。図の場合、内側のおもりは、軸 を右回りに回そうとしている。外側のおもりは、輪を左回りに回そうとしている。図の場合、右回りの力と左回りの力は、つりあっている。

輪軸 とは、自動車のハンドルに似たしくみの物です。外側の輪をまわすと、くっついている内側の軸 も、いっしょに、まわります。

このような、ハンドルなどの力の仕組みを考えたものを、輪軸といいます。

輪軸 の、力のしくみ は、てこの原理を 使って、考えることができます。

輪軸 の、つりあいを考えるときは、

  力 × 半径

で、かんがえる必要があります。

Yellow-flathead-screwdriver.jpg

ドライバーも 輪軸 になっています。

浮力[編集]

ふりこの運動[編集]

斜面を転がる物体の運動[編集]

[編集]

熱の伝わり方[編集]

物質の三態変化[編集]

水の三態変化[編集]

熱量[編集]

力・熱と体積[編集]

化学分野[編集]

実験器具とその使い方[編集]

いろいろな実験器具[編集]

  • 液体などを入れる
  • ビーカー
  • フラスコ

顕微(けんび)鏡[編集]

顕微鏡。 中学校のとは違うが、仕組みは だいたい同じであるはず。
ステージ上下式顕微鏡の各部の解説用のイラスト。
鏡筒上下式顕微鏡の解説イラスト。

鏡筒きょうとう上下式顕微けんび鏡と、ステージ上下式顕微鏡がある。鏡筒上下式顕微鏡の画像が無いので、参考書などを見てください。)

顕微鏡のレンズには、接眼レンズと対物レンズの2種類が必要である。

顕微鏡の倍率は、

  接眼レンズの倍率×対物レンズの倍率

である。

たとえば接眼レンズの倍率が15倍であり、対物レンズの倍率が4倍なら、顕微鏡の倍率は60倍である(15×4=60より)。

一般に小学校・中学校などで使うような形式の顕微鏡の倍率は、40倍から600倍までである。

ミジンコやミドリムシなど、いわゆる「微生物」と言われるものは、虫めがね では倍率が小さすぎて確認できない場合が多い。微生物などは、けんび鏡で観察しよう。


  • けんび鏡の手順

まず、プレパラートの準備が必要である。鏡筒上下式顕微鏡と、ステージ上下式顕微鏡のどちらとも、プレパラートが必要にななる。このプレパラートの準備方法を、つぎに説明する。

  • プレパラート
プレパラートとカバーガラス。細長いプレパラートの上に、中央に正方形状のカバーガラスが乗っている。

顕微鏡で観察する時は、プレパラートを使う必要がある。

うすい物しか観察できない。厚い物を観察したい場合は、うすい切片にする必要がある。

  1. スライドガラスの上に水を1滴たらし、観察したい対象を乗せる。必要に応じて、もう一度、対象物に水をスポイトなどで1滴たらして、水分を補う。
  2. 付き針やピンセットでカバーガラスを乗せ、このとき気泡が入らないようにする。
  3. カバーガラスから、はみでた水を、ろ紙やすい取り紙で吸い取る。
(※ 柄つき針を使ってる画像を募集中。だれか作ってください。)
  • 一般的な、けんび鏡の使用手順
  1. まず、水平で直接日光の当たらない場所に、けんび鏡を置く。
  2. レンズを取り付ける時は、まずは接眼レンズを取り付け、次に対物レンズを取り付ける。この順番を逆にすると、もし鏡筒の内部にホコリなどが入ってしまうと、対物レンズにホコリが落ちてしまい邪魔になる。(外すときは、逆の順序である。対物レンズを外し、接眼レンズを外す。)
  3. 対物レンズを、もっとも低倍率の物にセットし、次に接眼レンズをのぞきながら、視野全体が明るく見えるように反射鏡と しぼり を調節する。
  4. プレパラートをステージの上に乗せクリップで固定し、顕微鏡を横から見ながら、なるべく対物レンズとプレパラートを近づける。ピント合わせは、まだ行わない。なるべく近づける理由は、ピント合わせを行うとき、レンズとプレパラートとを離す方向でピント合わせを行うことで、ぶつからないようにするためである。
  5. 接眼レンズをのぞきながら、ピント合わせのため、対物レンズとプレパラートを離していくように、調節ねじ をゆっくり回して調整する。

以上の手順で、観察を始められる。さらに高倍率で観察したい場合には、対物レンズをレボルバーを回して、高倍率の対物レンズに替える。

光学顕微鏡などでの、映像の動かしたい方向と、プレーパラートを動かす方向との関係を図示。

顕微鏡で見える像は、上下左右が反対に見える顕微鏡が普通である。なので、プレパラートを動かすと、像は反対方向に動いて見える。よって、プレパラートを動かしたい場合には、動かしたい方向とは反対の方向に動かす。


いきなり、高倍率の対物レンズで観察すると、視野がせまいので調整が難しくなる。そのため、まずは低倍率の対物レンズを使用する。 また、高倍率にするほど、明るさは暗くなる。

上皿てんびん[編集]

  • 上皿てんびん
上皿天秤
上皿天秤に分銅を追加する図。
図では、薬包紙が見えませんが、理科の実験では、粉を乗せる時は薬包紙を使ってください。
(※ 日本の中学校で使うような上皿てんびんの画像を募集中。だれか撮影するか描くかして作ってください。)

質量を測定するときは、上皿天びんなどの天びんを用いる。

上皿天びんの操作方法

物質の質量を測定する場合は、片側に被測定物をのせ、反対側に分銅を載せる。分銅を質量の基準とする。 両方の皿の釣り合いを見て、質量を判断する仕組みである。 なので、皿に物を乗せる前に、両方の皿が釣り合っているかどうかを確認する必要がある。もし、釣り合っていなかったら天びん本体に調整用のねじ等が付いているので、それで両方の皿が吊り合うように調整してから、皿に物を乗せる。 粉末などを測定する場合は、粉末が溢れたりしないように薬包紙などを用いる。この場合は薬包紙を分銅を載せる側の皿にも置いた上で上記の調整を施したり、もしくは薬包紙の質量をあらかじめ測定しておく。

分銅は、あまり直接には、手で触らないようにする。 手の皮脂などが分銅につくと、その皮脂などの質量が追加した分だけ、重さが変わってしまうからである。 軽い分銅を皿に載せたりおろしたりする場合なら、専用のピンセットが天びんに付属していることがあるので、その付属のピンセットなどを用いる。

上皿てんびんの手順(左利きの場合は、文中の「右」を「左」に、「左」を「右」に読みかえる。)

  1. 上皿てんびんを水平な台の上に置く。
  2. 両方のうでに、それぞれ皿をのせる。まだ、分銅も測りたい物も、のせない。
  3. 指針が目もりの中央をさすように、調節ねじ で調整する。
  4. 右利きの場合、左の皿に、測りたい物をのせる。右の皿には、すこし質量が重そうな重りをのせ、つりあうように分銅を変えていく。(粉末の試料をのせる場合は、薬包紙を使う。)
  5. 針のふれを見て、左右がつりあえば、そのときに左右のうでにかかる重さが、つりあっている。
  6. 使いおわったら、皿を片方のうでに、重ねておく。
  • 電子てんびん
電子てんびん

電子てんびんの場合、上皿てんびん とは違い、左右のうでは無い。

電子てんびんの手順

  1. 電子てんびんを水平な台の上に置く。
  2. 何ものせない時に、表示が 0g になるようにセットする。重さの表示値が「0.0」や「0.00」などの表示になるようにする。
  3. 薬包紙を使う場合は、さきに表示を 0g にセットしてから、薬包紙をのせ、もう一度、表示を 0g にセットする。
  4. はかりたい物をのせる。薬品の重さをはかりたい場合は、静かに、少しずつ、のせる。
  5. 表示値を読み取る。表示値が、はかりたい物の重さである。

メスシリンダー[編集]

体積を測りたい液体を、少し少なく入れ、足りない分はスポイトで足す。

アルコールランプ[編集]

アルコールを8分目くらいまで入れ、ななめ下から火をつける。火を消すときは、ふたをかぶせて消す。

ガスバーナー[編集]

水溶液[編集]

水溶液の濃度[編集]

いろいろな水溶液の性質[編集]

気体[編集]

気体の集め方[編集]

水上置換法すいじょうちかんほうの説明図。
  • 水上置換法

科学実験で発生させた気体を集める場合、気体が空気よりも軽い物質の場合は、空気中を上昇していくので、補集用のフラスコなどは向きにして集める必要がある。 水に溶けない気体の場合は、水を満たした水槽に、フラスコを開いた口を下向きにして入れ、フラスコの内部は水で満たしておき、このフラスコの中にガラス管などで気体を導く。この方法を 水上置換法すいじょうちかんほう という。

酸素や水素は水に溶けにくいので、水上置換法で集められる。

水に溶ける物質でも、溶けにくい物質ならば、水上置換法で集める場合もある。

上方置換法じょうほうちかんほう の説明図。
  • 上方置換法

空気よりも軽い気体を集める場合で、水に溶けやすい物体を集める場合や、水に溶けにくい気体でも水に溶かしたくない場合などは、水を使わない方法で集める必要がある。フラスコの開いた口を向きにし、そのフラスコの内部にガラス管などで気体を導く。このとき気体を導くための管は、フラスコの奥の上の方まで入れる必要がある。このような集め方を 上方置換法じょうほうちかんほう という。

下方置換法かほうちかんほうの説明図。
  • 下方置換法

空気よりも重い気体を集める場合は、補集ほしゅう用のフラスコなどは、開いた口を上向きにして集める必要がある。 この集め方を下方置換法かほうちかんほうという。

酸素[編集]

二酸化炭素[編集]

水素[編集]

その他の気体[編集]

燃焼[編集]

燃焼の3要素[編集]

ろうそくのほのお[編集]

  • 外炎がいえん…炎の、いちばん外側の部分。色がうすくて、見えにくい。
  • 内炎ないえん…一番、明るい。
  • 炎心えんしんしんに近くて暗い。

特徴

外炎

空気に、じゅうぶん、ふれているので、完全燃焼しており、そのため、温度はいちばん高くて 約1400℃ である。

水にぬらした わりばし をさしこむと、外炎の部分から、こげ始めるため、外炎がいちばん温度が高いことが分かる。

ろうそく実験で、水でぬらした割り箸を炎にさしこむ実験。外炎のところから、わりばしは、こげはじめる。

内炎

ろうそく から 分解された炭素が、空気にふれていないので、炭素が燃えきらずに すす になっている。この すす が炎の高温でかがやいているので、内炎がいちばん明るくなっている。

内炎の温度は 約1200℃である。

炎心

酸素が少なく、あまり燃えていない。そのため、温度がひくく 約1000℃ である。

ガラス管を炎心にさしこむと、ガラス管の先から白い けむり が出てくる。この白い けむり に火を近づけると、けむり が 燃えるので、炎心は、まだ燃えきっていない物質があることが分かる。

蒸し焼き(乾留)[編集]

木の蒸し焼き。 :試験管の口は、すこし下げる。 熱せられた木から、褐色かっしょくの液体が出てくるが、この液体で試験管が冷やされるので、口を少し下向きにしないと、液体が加熱部にもどってしまい、加熱部が一気にひやされて、試験管が割れてしまう。

木を、火にはつけずに、試験管などに木を入れ、その試験管を加熱すると、中の木が燃えずに分解する。これを木の 蒸し焼き という。

木をむし焼きすると、白い気体が出てくる。蒸し焼きされた木から出る白い気体をもくガスといい、むし焼き実験での試験管の口にマッチをちかづけると燃えることから、この木ガスは燃えることが分かる。つまり、木ガスは燃える。

また、蒸し焼きされた木から、黄色い液体さくと黒い液体木タールがたれてきて、試験管の出口のほうに、たまる。木酢液は、酸性である。

蒸し焼きされた木は、黒い固体となり、木炭になる。木炭のおもな成分は炭素であり、空気中で加熱すると、あまり炎を出さずに、固体のまま、ゆっくり燃える。燃えるときに赤い光を出す。木炭は、バーベキューなどで燃料としても用いられる。


理科に関係する2019年のできごと[編集]

  • 吉野彰、「リチウムイオン電池」でノーベル化学賞受賞