数学演習/数学III/微分法/解答

出典: フリー教科書『ウィキブックス(Wikibooks)』
ナビゲーションに移動 検索に移動

本項は数学演習/数学III/微分法の解答を示す。

微分法[編集]

微分係数と導関数[編集]

〔1〕導関数の定義を用いる。 [1]

(1)
(2)
(3)

〔2〕 まず、関数で連続である。一方、

より、

この2式は等しくないので、、すなわち、における微分係数は存在しない。故に、示された。

微分の計算の基本[編集]

(1)は数学IIの復習、(2)は積の微分、(3)は商の微分、(4)・(5)は合成関数の微分である。[2]

(1)
(2)
(3)
(4)
(5)

色々な微分の計算[編集]

(6)は対数微分法を用いた方が圧倒的に速い(商の微分でも出来ないことはないがかなり面倒)。

(1)
(2)
(3)
(4) なので、
(5)
(6) 両辺の対数をとると、

そして両辺をで微分すると、

したがって、

(7)
(8)
(9)
(10) なので、

第n次導関数[編集]

1つずつ微分していく。

(1)
(2)
(3)

陰関数の導関数[編集]

[3]

(1) より、
(2) より、
(3) より、なので、

脚注[編集]

  1. ^ 「導関数の定義によって」等の記述があるにも関わらず導関数の公式を用いて微分すると不正答となるので注意。
  2. ^ 合成関数の微分においての考え方は「まずまるごと微分して後ろにf'(x)をつける」とすると良い。
  3. ^ 答えにが含まれるが、そもそもこれについて解けない場合が多いので、これを消去しようとする必要はない。