初等数学公式集/初等関数の性質

出典: フリー教科書『ウィキブックス(Wikibooks)』
ナビゲーションに移動 検索に移動

三角関数[編集]

大学受験数学 三角関数/公式集も参照

基本公式[編集]

  • 三角比の相互関係
    (ピタゴラスの基本三角公式)
    • 鋭角における三角比の相互関係(三角比のいずれかが有理数で表されている場合に有用)
Right triangle with notations.svg
  • であるとき。 ,
  • であるとき。 ,
  • であるとき。 ,

補角の公式(還元公式)[編集]

余角の公式(還元公式)[編集]

負角の公式(還元公式)[編集]

加法定理[編集]

(すべて複号同順)

二倍角の公式[編集]

半角の公式[編集]

三倍角の公式[編集]

和積の公式[編集]

積和の公式[編集]

三角関数の合成[編集]

  • ただし、

覚え方 位相を すると微分になると覚えましょう。 の三角関数も2階微分としてすぐに導出できます。 の三角関数は積分として覚えれられます。また、点 回転した点 は原点を中心に点対称移動した点  であることからも、 の三角関数を導出できます。

の三角関数は、点 軸で線対称移動移動した点が であることから導出できます。

加法定理は「咲いたコスモスコスモス咲いた」、「コスモスコスモス咲いた咲いた」という語呂合せがあります。

の倍角の公式 という形を覚えて は符号が 、1 の符号はその逆と覚えます。

2乗の三角関数 は、 という形を覚えて、 は符号が と考えます。


指数関数・対数関数[編集]

以下、この節内では a, b ,c は実数とする。

指数関数[編集]

対数関数[編集]

以下、 かつ とし、また対数の真数として表れるものはすべて正とする。

対数の定義
  • ,
    • 特に,